scrapy数据建模与请求

学习目标:

  1. 应用 在scrapy项目中进行建模
  2. 应用 构造Request对象,并发送请求
  3. 应用 利用meta参数在不同的解析函数中传递数据

1. 数据建模

通常在做项目的过程中,在items.py中进行数据建模

1.1 为什么建模

  1. 定义item即提前规划好哪些字段需要抓,防止手误,因为定义好之后,在运行过程中,系统会自动检查
  2. 配合注释一起可以清晰的知道要抓取哪些字段,没有定义的字段不能抓取,在目标字段少的时候可以使用字典代替
  3. 使用scrapy的一些特定组件需要Item做支持,如scrapy的ImagesPipeline管道类,百度搜索了解更多

1.2 如何建模

在items.py文件中定义要提取的字段:

1
2
3
4
class MyspiderItem(scrapy.Item): 
name = scrapy.Field() # 讲师的名字
title = scrapy.Field() # 讲师的职称
desc = scrapy.Field() # 讲师的介绍

1.3 如何使用模板类

模板类定义以后需要在爬虫中导入并且实例化,之后的使用方法和使用字典相同

job.py:

1
2
3
4
5
6
7
8
9
10
from myspider.items import MyspiderItem   # 导入Item,注意路径
...
def parse(self, response)
item = MyspiderItem() # 实例化后可直接使用

item['name'] = node.xpath('./h3/text()').extract_first()
item['title'] = node.xpath('./h4/text()').extract_first()
item['desc'] = node.xpath('./p/text()').extract_first()

print(item)

注意:

  1. from myspider.items import MyspiderItem这一行代码中 注意item的正确导入路径,忽略pycharm标记的错误
  2. python中的导入路径要诀:从哪里开始运行,就从哪里开始导入

1.4 开发流程总结

  1. 创建项目
    scrapy startproject 项目名

  2. 明确目标
    在items.py文件中进行建模

  3. 创建爬虫

    3.1 创建爬虫

    1
    scrapy genspider 爬虫名 允许的域

    3.2 完成爬虫

    1
    2
    3
    修改start_urls
    检查修改allowed_domains
    编写解析方法
  4. 保存数据
    pipelines.py文件中定义对数据处理的管道
    settings.py文件中注册启用管道

2. 翻页请求的思路

对于要提取如下图中所有页面上的数据该怎么办?

img

回顾requests模块是如何实现翻页请求的:

  1. 找到下一页的URL地址
  2. 调用requests.get(url)

scrapy实现翻页的思路:

  1. 找到下一页的url地址
  2. 构造url地址的请求对象,传递给引擎

3. 构造Request对象,并发送请求

3.1 实现方法

  1. 确定url地址
  2. 构造请求,scrapy.Request(url,callback)
    • callback:指定解析函数名称,表示该请求返回的响应使用哪一个函数进行解析
  3. 把请求交给引擎:yield scrapy.Request(url,callback)

3.2 网易招聘爬虫

通过爬取网易招聘的页面的招聘信息,学习如何实现翻页请求

地址:https://hr.163.com/position/list.do

思路分析:

  1. 获取首页的数据
  2. 寻找下一页的地址,进行翻页,获取数据

注意:

  1. 可以在settings.py中设置ROBOTS协议
1
2
# False表示忽略网站的robots.txt协议,默认为True
ROBOTSTXT_OBEY = False
  1. 可以在settings.py中设置User-Agent:
1
2
# scrapy发送的每一个请求的默认UA都是设置的这个User-Agent
USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36'

3.3 代码实现

在爬虫文件的parse方法中:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
......
# 提取下一页的href
next_url = response.xpath('//a[contains(text(),">")]/@href').extract_first()

# 判断是否是最后一页
if next_url != 'javascript:void(0)':

# 构造完整url
url = 'https://hr.163.com/position/list.do' + next_url

# 构造scrapy.Request对象,并yield给引擎
# 利用callback参数指定该Request对象之后获取的响应用哪个函数进行解析
yield scrapy.Request(url, callback=self.parse)
......

3.4 scrapy.Request的更多参数

1
scrapy.Request(url[,callback,method="GET",headers,body,cookies,meta,dont_filter=False])

参数解释:

  1. 中括号里的参数为可选参数
  2. callback:表示当前的url的响应交给哪个函数去处理
  3. meta:实现数据在不同的解析函数中传递,meta默认带有部分数据,比如下载延迟,请求深度等
  4. dont_filter:默认为False,会过滤请求的url地址,即请求过的url地址不会继续被请求,对需要重复请求的url地址可以把它设置为Ture,比如贴吧的翻页请求,页面的数据总是在变化;start_urls中的地址会被反复请求,否则程序不会启动
  5. method:指定POST或GET请求
  6. headers:接收一个字典,其中不包括cookies
  7. cookies:接收一个字典,专门放置cookies
  8. body:接收json字符串,为POST的数据,发送payload_post请求时使用(在下一章节中会介绍post请求)

4. meta参数的使用

meta的作用:meta可以实现数据在不同的解析函数中的传递

在爬虫文件的parse方法中,提取详情页增加之前callback指定的parse_detail函数:

1
2
3
4
5
6
7
8
def parse(self,response):
...
yield scrapy.Request(detail_url, callback=self.parse_detail,meta={"item":item})
...

def parse_detail(self,response):
#获取之前传入的item
item = resposne.meta["item"]

特别注意:

  1. meta参数是一个字典
  2. meta字典中有一个固定的键proxy,表示代理ip,关于代理ip的使用我们将在scrapy的下载中间件的学习中进行介绍

小结

  1. 完善并使用Item数据类:
    1. items.py中完善要爬取的字段
    2. 在爬虫文件中先导入Item
    3. 实力化Item对象后,像字典一样直接使用
  2. 构造Request对象,并发送请求:
    1. 导入scrapy.Request
    2. 在解析函数中提取url
    3. yield scrapy.Request(url, callback=self.parse_detail, meta={})
  3. 利用meta参数在不同的解析函数中传递数据:
    1. 通过前一个解析函数 yield scrapy.Request(url, callback=self.xxx, meta={}) 来传递meta
    2. 在self.xxx函数中 response.meta.get('key', '')response.meta['key'] 的方式取出传递的数据

参考代码

wangyi/spiders/job.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import scrapy


class JobSpider(scrapy.Spider):
name = 'job'
# 2.检查允许的域名
allowed_domains = ['163.com']
# 1 设置起始的url
start_urls = ['https://hr.163.com/position/list.do']

def parse(self, response):
# 获取所有的职位节点列表
node_list = response.xpath('//*[@class="position-tb"]/tbody/tr')
# print(len(node_list))

# 遍历所有的职位节点列表
for num, node in enumerate(node_list):
# 索引为值除2取余为0的才是含有数据的节点,通过判断进行筛选
if num % 2 == 0:
item = {}

item['name'] = node.xpath('./td[1]/a/text()').extract_first()
item['link'] = node.xpath('./td[1]/a/@href').extract_first()
item['depart'] = node.xpath('./td[2]/text()').extract_first()
item['category'] = node.xpath('./td[3]/text()').extract_first()
item['type'] = node.xpath('./td[4]/text()').extract_first()
item['address'] = node.xpath('./td[5]/text()').extract_first()
item['num'] = node.xpath('./td[6]/text()').extract_first().strip()
item['date'] = node.xpath('./td[7]/text()').extract_first()
yield item

# 翻页处理
# 获取翻页url
part_url = response.xpath('//a[contains(text(),">")]/@href').extract_first()

# 判断是否为最后一页,如果不是最后一页则进行翻页操作
if part_url != 'javascript:void(0)':
# 拼接完整翻页url
next_url = 'https://hr.163.com/position/list.do' + part_url
yield scrapy.Request(url=next_url,callback=self.parse)

wangyi/items.py

1
2
3
4
5
6
7
8
9
10
11
class WangyiItem(scrapy.Item):
# define the fields for your item here like:

name = scrapy.Field()
link = scrapy.Field()
depart = scrapy.Field()
category = scrapy.Field()
type = scrapy.Field()
address = scrapy.Field()
num = scrapy.Field()
date = scrapy.Field()

__END__

三国小梦
文章作者:三国小梦
文章出处scrapy数据建模与请求
作者签名:简单地活着, 肆意又精彩.
关于主题Hexo - Live For Code
版权声明:文章除特别声明外,均采用 BY-NC-SA 许可协议,转载请注明出处